BatchIcoxxlistFeaturizer#
- class lobsterpy.featurize.batch.BatchIcoxxlistFeaturizer(path_to_lobster_calcs, normalization='formula_units', bin_width=0.02, bwdf_df_type='stats', sorted_dists_mode='negative', interactions_tol=0.001, max_length=6.0, min_length=0.0, read_icobis=False, read_icoops=False, n_jobs=4)[source]#
Bases:
object
BatchFeaturizer to generate BWDF-derived features from ICOXXLIST.lobster data.
- Parameters:
path_to_lobster_calcs (str | Path) – path to root directory consisting of all lobster calc
max_length (float) – maximum bond length for BWDF computation
min_length (float) – minimum bond length for BWDF computation
normalization (Literal['formula_units', 'area', 'counts', 'none']) – normalization strategy for BWDF
bin_width (float) – bin width for BWDF
bwdf_df_type (Literal['binned', 'stats', 'sorted_bwdf', 'sorted_dists']) –
Type of BWDF dataframe to generate
”binned”: Binned BWDF function.
”stats”: Statistical features of BWDF function.
”sorted_bwdf”: BWDF values sorted by distances, ascending.
”sorted_dists”: Distances sorted by BWDF values (either only positive or negative), sorted descending by absolute values.
sorted_dists_mode (Literal['positive', 'negative']) – only applies if bwdf_df_type==”sorted_dists”. Corresponds to param “mode” of get_sorted_dist_df, defines whether BWDF values above or below zero are considered for distance featurization.
n_jobs – number of parallel processes to run
interactions_tol (float)
read_icobis (bool)
read_icoops (bool)
- Read_icobis:
bool to state to read ICOBILIST.lobster from the path
- Read_icoops:
bool to state to read ICOOPLIST.lobster from the path